[R] Classification Problem : QDA, Naive Bayes, KNN
1. QDA(Quardratic Discriminant Analysis) QDA assumes that each class has its own covariance matrix, \(X ~ N(\mu_k, \sum _ k)\) LDA vs QDA Probability : \(P(y_i=k|x)\) X : \(N(\mu_k,\sum)\) vs \(N(\mu_k, \sum_k)\) Parameters : \(\mu_1, ..., \mu_k$ vs $\mu_1, ..., \mu_k, \sum_1, ..., \sum_k\) Num of grids : \(PK + \frac{P(P+1)}{2}$ vs $PK + K\frac{P(P+1)}{2}\) 1.1 [Ex] LDA vs QDA Classification Er..