1. Formular of Regularization Methods
$$ Q_{\lambda}(\beta_0, \beta) = -l(\beta_0, \beta) + p_{\lambda}(\beta)$$
2. The negative log-likelihood function
- Quantitative outcome: least square loss function
- Binary outcome: logistic likelihood
- Matched case-control outcome: conditional logistic likelihood
- Count outcome: Poisson likelihood
- Qualitative outcome: Multinomial likelihood
- Survival outcome: Cox partial likelihood
3. Types of Penalty Functions
- Convex penalty functions
- Lasso (Tibshirani, JRSS, 1996)
- Fused lasso (Tibshirani et al. JRSS, 2005)
- Adaptive lasso (Zou, JASA, 2006)
- Elastic-net (Zou and Hastie, JRSS, 2005)
- Non-convex penalty functions
- lq-norm penalty with 0 < q < 1
- Smoothly clipped absolute deviation (SCAD) (Fan and Li, JASA, 2005)
- Minimax concave penalty (MCP) (Zhang, AOS, 2010)
- Group structure penalty functions
- Group lasso (Yuan and Lin, JRSS, 2006)
- Graph-constrained regularization (Li and Li, AOAS 2010)
- Sparse group lasso (Simon et al. JGCS 2013)
'Data Science > R' 카테고리의 다른 글
[R] Classification Problem : Logistic Regression (0) | 2022.10.18 |
---|---|
[R] Elastic-Net Regression (0) | 2022.10.13 |
[R] Simulation Study : Prediction Performance (0) | 2022.10.11 |
[R] Useful Functions for Regression Problems (0) | 2022.10.07 |
[R] Regularization Methods : Binary (0) | 2022.10.05 |