본문 바로가기

Data Science/R

[R] Regularization Methods

1. Formular of Regularization Methods

$$ Q_{\lambda}(\beta_0, \beta) = -l(\beta_0, \beta) + p_{\lambda}(\beta)$$

 

2. The negative log-likelihood function

  • Quantitative outcome: least square loss function
  • Binary outcome: logistic likelihood
  • Matched case-control outcome: conditional logistic likelihood
  • Count outcome: Poisson likelihood
  • Qualitative outcome: Multinomial likelihood
  • Survival outcome: Cox partial likelihood

 

3. Types of Penalty Functions

  • Convex penalty functions
    • Lasso (Tibshirani, JRSS, 1996)
    • Fused lasso (Tibshirani et al. JRSS, 2005)
    • Adaptive lasso (Zou, JASA, 2006)
    • Elastic-net (Zou and Hastie, JRSS, 2005)
  • Non-convex penalty functions
    • lq-norm penalty with 0 < q < 1
    • Smoothly clipped absolute deviation (SCAD) (Fan and Li, JASA, 2005)
    • Minimax concave penalty (MCP) (Zhang, AOS, 2010)
  •  Group structure penalty functions
    • Group lasso (Yuan and Lin, JRSS, 2006)
    • Graph-constrained regularization (Li and Li, AOAS 2010)
    • Sparse group lasso (Simon et al. JGCS 2013)